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Spin recoupling and n-electron matrix elements 
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t Groupe de Physique Moleculaire, Ecole Polytechnique, Paris Ve, France 
$ Institut fur Theoretische Physik, Universitat Tubingen, Deutschland 

Received 13 June 1974 

Abstract. For n-electron systems with well defined total spin antisymmetric states are 
constructed by successively coupling the spins associated with each orbital. A second 
quantized scheme is used and the matrix elements of these states are expressed both for 
spin-independent and spin-dependent interactions in terms of recoupling coefficients of 
SU(2). The latter are evaluated to give very simple expressions. As a particular case a 
simple formula for the matrix elements of generators of U(N) for two-column partitions is 
obtained. 

1. Introduction 

A large number of methods are available to construct antisymmetric n-electron states 
with good total spin. Here we shall be interested in the orthogonal basis one obtains 
by successively coupling the spins associated with each orbital. To impose antisymmetry 
in a simple way we shall use a second quantization formalism. In fact, we use the states 
defined in Moshinsky and Seligman (1971) which were shown, for N orbitals, to be equal 
up to a phase, to Gel’fand states of U(N) associated with a two-column Young diagram. 
These states are isomorphic to those given in Gouyet (1970). We may also mention 
that in a permutational formulation, these states would correspond to a Kotani- 
Yamanouchi representation (Kotani et al 1963). 

We shall proceed to show that it is possible to give simple closed forms for the matrix 
elements of both spin-independent and spin-dependent operators using the recoupling 
techniques of SU(2) developed by Yutsis et a1 (1962). 

The spin-independent one-body operators are known to be given in terms of the gen- 
erators of U(N) (Moshinsky 1967) and we could in principle use the result by Gel’fand 
and Zetlin (1950) for their matrix elements. Yet actually this formula proves rather 
clumsy to handle for large N and one of the reasons to start this investigation was that 
association in the permutation group suggests that for the rather trivial case of a two- 
column partition a solution in SU(2) should be possible. Indeed we find a simple ex- 
pression for this matrix element that has proved to be adequate for numerical calculations 
(J F Gouyet, B Huron, M T Prat unpublished program (SPINCIP) for calculation of 
excited states of polyelectronic systems). 

The relation shown in Gouyet and Goychman (unpublished) and Gouyet (1971) 
between the diagrammatic techniques customary in perturbation theory and those 
introduced for recoupling problems by Yutsis et al(1962) may easily be extended to this 
approach and allows a very transparent interpretation of the techniques developed for 
the evaluation of matrix elements. 
Q Present address : Institut fur Theoretische Physik Universitat zu Koln, Deutschland. 
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2. The second quantization picture 

We shall consider a system of N orthonormal orbitals labelled by p = 1 . . . N .  The 
two components of the spin of the electrons shall be denoted by a = +4 and we write a 
spin-orbital as Ipa). 

Then, a creation operator applied to a vacuum state 10) is equivalent to a spin- 
orbital as 

b:"IO) * bo). (2.1) 

The Hermitian conjugate operators b'" are the corresponding annihilation operators 
yielding zero when applied to the vacuum. 

We further require the anticommutation relations 

{b iu ,  b:.b.} = {b,", b""') = 0 :  {bin, b"'"') = 6"'6"' , a  (2 .2 )  

A monomial in bib applied to 10) is equivalent to a Slater determinant of n states 

( 2 . 3 )  

where the 6; are Kronecker symbols. 

( jlpiai), particle j occupying the spin-orbital Ipioi) : 

b:,bI.. . b:nbnIO) * detII(jI~i0i)II. 

Using these states the one- and two-body operators 

( 2 . 4 ~ )  
i =  1 

n 

C vij 
i < j = l  

are replaced by the equivalent operators 

(2.4b) 

containing the one- and two-body matrix elements, respectively (see eg Moshinsky 

Thus, the monomials in bfio correspond to antisymmetric states. But actually in most 
electron problems we need antisymmetric states with good total spin and we want a 
basis of independent states for a given total spin. One possibility to obtain such a basis, 
and indeed an orthogonal one, is given by successively coupling the spins associated 
with the orbitals. Each orbital may be occupied at  most twice and therefore we have the 
correspondence : 

1967 pp 6-7). 

s,, = a, = 0 

(b;)".: s =) ;a  P = +' - 2  I s, = a, = 0 

for n, = 0 

for nP = 1 

for n, = 2 

implying that the total spin in a doubly-occupied orbital is zero and that in a singly- 
occupied orbital is s, = +. 



Spin recoupling and n-electron matrix elements 287 

Using the usual angular bracket notation to denote vector coupling in SU(2) we 
obtain the states : 

Here the Si imply the intermediate spins, S ,  = s1 denoting the spin of the first shell. 
g and ,S are the shorthand notation for the sets np and S , .  

These states are identical to the ones of the occupation branching number represen- 
tation (Gouyet 1970) and have also been shown to be equal up to a phase to Gel’fand 
states corresponding to a two-column partition characterizing an IR of U(N) (Moshinsky 
and Seligman 1971). 

Now, the problem we have to deal with is from the point of view of SU(2) one of 
multiple coupling and, regarding matrix elements, one of multiple recoupling. Such 
problems are discussed extensively by Yutsis et a1 (1962) and we shall adopt their notation 
by explicitly writing the coupled spins sr in the ket 

IC; SSMs) = In(s, . . . s~)~OSSM,). 

A ,  = ((...((.+.)+.)+ . . .  )+.I 

(2.7) 

Here A ,  stands for the successive order of coupling as 

(Yutsis et a1 1962, equation (2.2.12)). 

3. The matrix elements of spin-independent single-particle operators 

In this section we shall be concerned with the calculation of matrix elements of the 
operator : 

(3.1) U,” = bt b N + f + b t  b N - t  E b? bNa 
k + f  k - f  ka  

between states of the type (2.6). This operator occurs in the one-body operator (2.51) 
if the one-body matrix element is diagonal in the spin component and does not depend 
on it, ie if we have a spin-independent operator. It is important to note that g,” is actually 
the generator of the group U(N) of unitary transformations in the space spanned by the 
N orbitals. 

First let us calculate the matrix element of %$-,. Using expression (2.7) for the 
states we find : 

(n;  . . . nh(s; . . . S ; J ) ~ O $ ’ S M ~ J % ? R ” - ~ ~ ~ ~  . . . nN(s, . . . S ~ ) ” O _ S S M ~ )  
N - 2  

= n 6ii6$6zi(nh- Ink((SN-2s;- 1 ) s N -  Ish) 
p =  1 

SMSlg$- l l n N -  lnN((sN-2sN- l )SN- lsN)SMS) 

N - 2  

= n 6iid262 (((SN-2sh- 1)s;- lsk)SI(SN-2(sh- 1sh)A’)s) 
p = l  1,1’ 

x (nh- ln;(SN-2(sk- 1 S k ) A ’ ) S M S I V $ -  1 b N -  1 n N ( S N - 2 ( s N -  1 s N ) A ) S M s )  

<(sN-2(sN- 1SN)A)Sl((SN-2SN- l ) S N -  
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(3.2) 
with ( X )  = 2X+1. 

In the first step we use the fact that %':- only acts in the last two orbitals, then we 
perform a recoupling of the spins S, - z,  s; - , sh and SN - 2 ,  sN- 1 ,  s,, respectively to 
couple the spins of the orbitals that appear in the operator. In the last step we write 
the recoupling coefficients in the usual way as 6-j symbols and use the fact that %'i-l 
is a scalar in spin space. Therefore A = 1' and we can write a matrix element depending 
only on the occupation numbers of the last two orbitals. All possible combinations of 
nh - 1 ,  n,, nN - and nN leading to a non-vanishing matrix element of %?;- together with 
the values of SX - , sh , S, - s N ,  1 and I' are shown in table 1. Inspection shows that 1, 
is determined uniquely by the occupation numbers, ie by the spins as 1 = IS, - - sNl. 
In table 2 the remaining matrix elements of%':- are listed. They may readily be evaluated 
using the anticommutation relations (2.2). Both in tables 1 and 2 we write k for N - 1 
as this will be useful in the general case. 

N 
x ( n k ' - l n h l w N -  l l n N - l n N ) d A , ~ s ~ -  I - S N /  

Table 1. Possible values of occupation numbers and spins. 

nk n,v n;  n \. ' k  s x  s; s x A I' 

0 2 1 1 0 0 I T 0 0. I 
0 0 1 T 0 2 1  

1 2 2 1 T 0 0 2 I 
1 1 2 0 T I 0 0 0. I 0 

~ ~ ~ _ _ _ _ _ _ _ _ _  
I 1 

I 1 I 1 

I - 1 I I 

I 1 

0 I I 

TaMe 2. Matrix elements of (nn  nklVfln, nN) ,  

Considering the possibilities for sh- 1, sx ,  S, - and S, according to table 1 we find 
that at least one of the 6-j symbols always contains a zero and the other is also a par- 
ticularly simple one. 

Later, we shall distinguish the cases that correspond to s(N- = 0 and s,- = 0 
introducing the resulting simplifications. 

But first, let us reduce the matrix elements of '3; to that of %?:- 1 .  To do so we apply 
the cyclic permutation P f -  = (k, N - 1, N - 2, . . . , k + 1) to the orbitals both in bra 
and ket. 
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Using equation (2.7) for the states we obtain : 

(n; . . . n;V(s; . . . s;V)Aos'SM,IV;ln . . . nN(s . . . s ~ ) ~ o @ M , )  
= ( -  l ) " ~ x ~ ~ ~ +  in;( - l ) " k T ? = i i +  in ,  

x (P;-l(sl * . . sN))A"TsM,)s~~,"_:((P;- l (s l  . . . s,))A0Tl(s1 . . . S N ) A O S ) .  (3.3) 

The phases appearing stem from the interchanges of the Fermi operators, denoted 
symbolically by writing the set of occupation numbers as P;- ' (n1  . . . nN). Further we 
have two recoupling coefficients of SU(2) for the spins on both sides. T' and T denote 
the sets of new intermediate spins. 

The recoupling coefficients in equation (3.3) may be chosen to be real and therefore 
the two coefficients appearing are of the same type. We now proceed to simplify such a 
coefficient using the techniques of Yutsis et a1 (1962). We find : 

((P;-'(s1 . . . sN- JA0Tl . . . TN-,SN- ll(sl . . . sN- l)AoSl . . . S,- ,S , -  1) 

k -  1 

x s k . . . s N - l )  

d:: ((( q - 1 sp + l ) q s k ) s p  + 1 I (q - l s k ) s p s p  + 1 )sp + 1 >. (3.4) 

In the first step we used the fact that the first k -  1 spins are not affected by the permu- 
tation. Then we factorized the multiple recoupling coefficient into a product of re- 
coupling coefficients of three angular momenta corresponding to a transposition 
(k ,  ,U + 1 )  each time. 

That the result is a simple product may be seen according to Yutsis er a1 (1962, 
equation (9.3)). The recoupling coefficients in the last line of equation (3.4) may of 
course be expressed in terms of 6-j symbols as 

p = l  p = k  

(((q- l s p +  l ) q s k ) s p +  ll((Tp- l s k ) s p s p +  l ) s p +  1 )  

(3.5) 

In principle we have now obtained the matrix elements of U; as we may introduce 
the result (equation (3.2)) for V:- into the remaining matrix element in the last line of 
equation (3.3), replacing N - 1 by k. Yet we still lack a large amount of simplifications 
due to the strong restrictions imposed on s i ,  SA, s k  and sN for non-vanishing matrix 
elements according to table 1. First we note that, as either s; or sk = 0, one of the two 
recoupling coefficients in equation (3.4) is trivial and yields T = S or T'  = S', respectively 
thus eliminating one of the sums over intermediate couplings. If we also consider the 
Kronecker 6% for the intermediate coupling in equation (3.2) the sums over both T' 
and T have to vanish but the coefficient will be different for the two cases s; = 0 and 
sk = 0, respectively. The remaining 6-j symbols are still very simple and may be given 
explicitly without summations if one distinguishes the possible cases appropriately. 

Tp-l "1. i S p + l  S p + l  T p  

- [(q)(s,)]1/2(-1)T,+s,+Sk++S,+l sk - 
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The final result can now be given as: 

The coefficients T(i) are given in table 3 and are obtained directly by evaluating the 
6-j symbols in equation (3.5). The T’(i) are obtained by interchanging in table 3 the 
primed and unprimed quantities. 

+i 0 
I 

I . .~ 

(S,)  

Equation (3.6) gives indeed the result for the most general spin-independent operator. 
This is the case because if we consider W;’ rather than %3: we obtain the result by consider- 
ing it in a smaller space of k‘ or k orbitals depending on whether k‘ =- k or k‘ < k. While 
the first case corresponds to an operator %‘: in the smaller space, the second corresponds 
to W i ,  related to %‘: trivially by Hermitian conjugation. Naturally, we have also found 
a simplified expression for the generators of U(N) in the special case of two-column 
partitions in a basis that is up to a phase equal to the usual Gel’fand basis. 

4. The diagrammatic formulation 

In this section we shall connect the results of 0 3 with the diagrammatic approach given 
in Gouyet (1970, 1971), Gouyet and Goychman (unpublished) and with the graphs of 
Yutsis for recoupling. 
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It is important to note that in the occupation branching number representation as 
formulated in Gouyet (1 970) only the singly-occupied orbitals appeared explicitly 
while we shall include all orbitals in our notation to obtain a more compact form. For 
actual calculations doubly-occupied and empty orbitals corresponding to spin zero are 
certainly irrelevant if the operators do not act in these orbitals and they will drop out 
again. 

Thus we may represent the state (2.6) graphically as 

where n, = 0,1 ,2  again denotes the occupation number of the pth orbital and 
C, = S,  - S,-  denotes the change in the total spin occurring when coupling the orbital 
p. We imply Cl = S ,  and CN = S -  SN . and we denote the set of C, by y = (Cl ,  .... CN). 
This set is of course equivalent to (8, S } .  We recall that C, = +$ for n, = 1 and C, = 0 
for n, = 0,2. 

The Yutsis diagram corresponding to the state (4.1) is 

. . .  (4.2) 

a2 a1 
N -  1 n ( - 1 y i + 1 + s i - ~ i + 1  

i = l  S +  S N - 1  " .  S2-k SI+ 0 

including the factors necessary to change jm symbols into Clebsch-Gordan coefficients. 
Note that equation (4.2) is not sufficient to define the state (4.1) as the occupation 
numbers are not specified and s, = 0 may be associated with n, = 0 or 2. Indeed, we 
shall have to take into account the parts of the state not contained in (4.2) when calcu- 
lating matrix elements and it is therefore useful to distinguish the diagrams (4.1) and 
(4.2) while exploiting their similarity. Graphically a mono-electronic operator (2 .5~~)  
is represented by : 

a' 0' 

a a 

and in particular we obtain for the operator Wf 

(4.4) 
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/ / 

A. niv ,. nk -  I I .  n i  

" n N  " nN-I " nk 

// / I  

2. n i  I s  n i  

(4.5) 
n2 n i  

i n s  t n N - l , ,  t n k  ~ i n ,  

C, & - 1  Zk Cl e={@) 1: ON 1 il:;;inl, 
C, = , - 1  ' k i l  ' k  'k-1 '1 

(4.6) - - - 

n N -  I 

Here 0 = (0 [,. . . , O N )  plays exactly the role of the intermediate couplings T in 
equations (3.3) and (3.4). Also we must have C, = ON corresponding to S,-  = TN- 
in equation (3.3). 

Performing this procedure twice, we may rewrite the matrix element (4.5) as 

*-- C (4.7) 
e,w 

Here we did not write explicitly all O,, O;, C,, C;. We note that now, because of 
n; = n,+ 1 either nk = 0 or n; = 2. Therefore either the transformation coefficient A 
is trivial since an empty orbital is permuted or the transformation coefficient B is trivial 
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since a doubly-occupied orbital is commuted. In either case the spin associated with 
this orbital is zero. 

Thus in the case nk = 0 we have Zk = 0 and 0,- = 0 and 

(4.8) 

Then the recoupling factor B may be evaluated by passing to Yutsis diagrams and 
we find: 

t \ / I  \ I  

The first phase factor stems from the permutations of the Fermi operators. The second 
factor is necessary to pass from a recoupling to an invariant of the 3N-j type. The 6 
symbols occur because we have cut those parts of the diagram involving a trivial re- 
coupling. It is immediately possible to decompose the remaining graph into 6-j 
symbols (Yutsis et a1 1962, p 47, figure 15.2) and recover equations (3.4) and (3.5). 
Actually we only obtain contributions from singly-occupied orbitals. 

The case st = 3 and s; = 0 is treated in quite the same way. Then the factor B 
becomes trivial and A is given by an expression similar to equation (4.9). For a numerical 
calculation where the matrix elements of %': for all k will be necessary it is useful to take 
an iterative procedure to evaluate the graph in equation (4.9) as 

SN-2 =+ she- S N - l  x(-1)2sN-2 

Th-2 TN-3 

+ 

which is equivalent to using the recursion relation obtained in Gouyet and Goychman 
(unpublished) and Gouyet (1971) considering the coefficient A as a matrix element of 
the permutation group S(N) .  This recursion relation was used in Gouyet er a1 (un- 
published). 
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In this way all necessary coefficients may be calculated step by step without repeti- 
tions. 

Finally, the remaining factor C in equation (4.7) is exactly the matrix element of 
%:- given in (3.2) and the recoupling performed there could also be done graphically. 
The important point to note is that the 8%’, p = 1 , .  . . , N -2  that may be read off the 
graph immediately, together with equation (4.Q will cancel ail summations in equation 
(4.7). We thus obtain the result equation (3.7) considering the two possible cases s; = $, 
s ,=Oands ;=O,s ,=3 .  

5. Matrix elements of a spindependent single-particle operator 

If the mono-electronic operator ( 2 . 5 ~ )  is spin-dependent, it may be expressed in terms 
of irreducible tensor operators of rank 1 and possibly a scalar part that is omitted here 
since it may be treated as in $0 3 or 4. 

W = 1 (palWl(K, q)Ip’a’)b:,b”’“‘ 
ea,p ’a ‘  

= 1 (Pll~l(~)l lP’>o,(P5 P’) ( 5 . 1 )  
P.”’ 

Therefore we only have to consider matrix elements of vector operators ( k  = 1) as: 

(n’, . . . nh(s‘, . . . S ~ ) ~ O S S ’ M ’ I O : ( ~ ,  $)In . . . nN(s1 . . . S ~ ) ~ O $ S M )  

x n ,  . . . nN(sl . . . SN)AO_SS)  (5.2) 

where we may assume p‘ > p, as before. As a first step we calculate the matrix element 
of 01(1, I -  1) which is in graphical representation 

(n; . . . nk(s; . . . sL)Aos’S’M’lO1(l, 1 - l)ln, . . . nN(s1 . . . sN)’”SSM) 

i # l  j =  1 
i # 1 -  1 

i =  1 
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In distinction to equation (4.5) we now have an (K = 1 )  interaction line coupling the 
spin K of the operator, to the total spin. 

But again the diagram is decomposable into a product of 6-j coefficients and a 
reduced matrix element involving only two orbitals as 

+ + + 
Inserting (5.4) into (5.3) and evaluating the graphs we obtain : 

(n', . . . n~y(s; . . . s~)~oS'S'(~O~(I, I -  l)(ln1 . . . n N ( ~ 1  . . . s N ) ~ o S S )  

- 2  

(5.4) 

(5 .5 )  

lo and 1; are again uniquely determined by the occupation numbers. The remaining 
matrix element may be evaluated using the anticommutator relations (2.2). 

Now, the matrix elements of the operators O1(Zi, k), 1 < k < 1 < N are easily 
obtained. Following the arguments of & 3 or 4 we have: 
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where 

and the V ( p )  are defined as 

else 

(1 < p < N I .  

These coefficients are listed in table 4. 

6. Conclusion 

Starting from states built from successively spin-coupled Fermi operators we were able 
to give the matrix elements of one-body operators both spin-independent and spin- 
dependent in terms of two-body matrix elements and simple algebraic expressions 
involving the dimensions of spin multiplets. We found these expressions using recoupling 
techniques of SU(2) as well as the corresponding graphical methods of Yutsis et al(1962) 
which proved particularly useful. The connection to the graphical approach Gouyet 
introduces for perturbation expansions (Gouyet 1970, 1971, Gouyet and Goychman, 
unpublished) was established, and the results are equivalent to those obtained in Gouyet 
(197 1, 1972), Gouyet and Goychman (unpublished) by different considerations. 

The method readily extends to two-body operators. Drawing the graphs for two- 
body operators we may evaluate them using the same ideas, the main difference being 
that now no longer will all summations cancel and therefore the results will be somewhat 
more complicated. (This problem is discussed from a different point of view in Gouyet 
(1971) and Gouyet and Goychman (unpublished)). For spin-independent operators 
alternatively the usual second-order polynomial (Moshinsky 1967) in the generators 
(3.1) can be chosen. Its matrix elements may be evaluated by inserting a complete basis 
in the second-order term, again giving rise to a summation. The generalization to non- 
orthogonal orbitals is straightforward if one applies the dual space techniques discussed 
in Moshinsky and Seligman (1971). 

Asa final point we wish to emphasize that the expressions obtained are very accessible 
to numerical calculations because the matrix elements may be generated by iteration 
starting eg with W -  1,  %?i-2 up to %?: always using the previous matrix element and 
multiplying by one factor of the type (3.7). A program of this type has been elaborated 
by one of the authors (JFG) for spin-independent one- and two-body operators and for 
up to eight unpaired electrons, an upper limit for practical calculations. 
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